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Adaptation to Climate Change:  
Evidence from US Agriculture†

By Marshall Burke and Kyle Emerick*

Understanding the potential impacts of climate change on economic 
outcomes requires knowing how agents might adapt to a changing 
climate. We exploit large variation in recent temperature and 
precipitation trends to identify adaptation to climate change in US 
agriculture, and use this information to generate new estimates of the 
potential impact of future climate change on agricultural outcomes. 
 Longer run adaptations appear to have mitigated less than half—and 
more likely none—of the large negative  short-run impacts of extreme 
heat on productivity. Limited recent adaptation implies substantial 
losses under future climate change in the absence of countervailing 
investments. (JEL Q11, Q15, Q51, Q54)

How quickly economic agents adjust to changes in their environment is a central 
question in economics, and is consequential for policy design across many 

domains (Samuelson 1947; Viner 1958; Davis and Weinstein 2002; Cutler, Miller, 
and Norton 2007; Hornbeck 2012). The question has been a theoretical focus since 
at least Samuelson (1947), but has gained particular recent salience in the study of 
the economics of global climate change. Mounting evidence that the global climate 
is changing (Meehl et al. 2007) has motivated a growing body of work seeking to 
understand the likely impacts of these changes on economic outcomes of interest. 
Because many of the key climatic changes will evolve on a  time-scale of decades, 
the key empirical challenge is in anticipating how economic agents will adjust in 
light of these  longer run changes. If adjustment is large and rapid, the resulting 
economic damages associated with climate change could be minimal. But if agents 
appear slow or unable to adjust on their own, overall damages from climate change 
could be much larger and of greater policy interest.

To understand how agents might adapt to a changing climate, an ideal but impos-
sible experiment would observe two identical Earths, gradually change the cli-
mate on one, and observe whether outcomes diverged between the two. Empirical 
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 approximations of this experiment have typically either used  cross-sectional varia-
tion to compare outcomes in hot versus cold areas (e.g., Mendelsohn, Nordhaus, and 
Shaw 1994; Schlenker, Hanemann, and Fisher 2005), or have used variation over 
time to compare a given area’s outcomes under hotter versus cooler conditions (e.g., 
Deschênes and Greenstone 2007, 2011; Schlenker and Roberts 2009; Dell, Jones, 
and Olken 2012). Due to omitted variables concerns in the  cross-sectional approach, 
the recent literature has preferred the latter panel approach, noting that while aver-
age climate could be correlated with other  time-invariant factors unobserved to the 
econometrician,  short-run variation in climate within a given area (typically termed 
“weather”) is plausibly random and thus better identifies the effect of changes in 
climate variables on economic outcomes.

While using variation in weather helps to solve identification problems, it per-
haps more poorly approximates the ideal climate change experiment. In particular, 
if agents can adjust in the long run in ways that are unavailable to them in the short 
run,1 then impact estimates derived from  shorter run responses to weather might 
overstate damages from  longer run changes in climate. Alternatively, there could be 
 short-run responses to inclement weather, such as pumping groundwater for irriga-
tion in a drought year, that are not tenable in the  long run if the underlying resource 
is depletable (Fisher et al., 2012). Thus, it is difficult to even sign the “bias” implicit 
in estimates of impacts derived from  short-run responses to weather.

In this paper we exploit variation in  longer term changes in temperature and pre-
cipitation across the United States to identify the effect of climate change on agri-
cultural productivity, and to quantify whether  longer run adjustment to changes in 
climate has indeed exceeded  shorter run adjustment. Recent changes in climate have 
been large and vary substantially over space: as shown in Figure 1, temperatures in 
some counties fell by 0.5°C between  1980–2000 while rising 1.5°C in other counties, 
and precipitation across counties has fallen or risen by as much as 40 percent over 
the same period. We adopt a “long differences” approach and model  county-level 
changes in agricultural outcomes over time as a function of these changes in tem-
perature and precipitation, accounting for  time-invariant unobservables at the county 
level and  time-trending unobservables at the state level.

This approach offers three distinct advantages over existing work. First, unlike 
either the panel or  cross-sectional approaches, it closely replicates the idealized 
climate change impact experiment, quantifying how farmer behavior responds to 
 longer run changes in climate while avoiding concerns about omitted variables bias. 
Second, observed variation in these recent climate changes largely spans the range 
of projected  near-term changes in temperature and precipitation provided by global 
climate models, allowing us to make projections of future climate change impacts 
that do not rely on large  out-of-sample extrapolations. Finally, by comparing how 
outcomes respond to  longer run changes in climate to how they respond to shorter 
run fluctuations as estimated in the typical panel model, we can test whether the 
 shorter run damages of climatic variation on agricultural outcomes are in fact mit-
igated in the  longer run. Quantifying this extent of recent climate adaptation in 

1 For example, Samuelson’s famed Le Chatelier principle, in which demand and supply elasticities are hypoth-
esized to be smaller in the short run than in the long run due to fixed cost constraints. 
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 agriculture is of both academic and policy interest, and a topic about which there 
exists little direct evidence.

We find that productivity of the primary US field crops—corn and soy—is sub-
stantially affected by these  long-run trends in climate. Our main estimate for corn 
suggests that spending a single day at 30°C (86°F) instead of the optimal 29°C 
reduces yields at the end of the season by about half a percent, which is a large 
effect.2 The magnitude of this effect is the net of any adaptations made by farmers 
over the 20-year estimation period, and is robust to using different time periods and 
differencing lengths.

To quantify the magnitude of any  yield-stabilizing adaptations that have occurred, 
we then compare these long differences estimates to panel estimates of  short-run 
responses to weather.  Long-run adaptations appear to have mitigated less than about 
half of the  short-run effects of extreme heat exposure on corn yields, and point esti-
mates across a range of specifications suggest that  long-run adaptions have more 
likely offset none of these  short-run impacts. We also show limited evidence for 
adaptation along other margins within agriculture: revenues are similarly harmed 
by extreme heat exposure, and farmers do not appear to be substantially altering the 
inputs they use nor the crops they grow in response to a changing climate.

We then examine different explanations for why adjustment to recent climate 
change has been minimal. For instance, adaptation could be limited because there 
are few adjustment opportunities to exploit, or alternatively because farmers don’t 
recognize that climate has in fact changed and that adaptation is needed. Which 
explanation prevails is important for how we interpret our results, and in particular 

2 The  within-county standard deviation of days of exposure to “extreme” temperatures above 29°C is 30, mean-
ing a 1 standard deviation increase in exposure would reduce yields by 15 percent. 
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Figure 1. Change in Temperature (°C), Precipitation ( percent),  
and log Corn Yields over the Period  1980–2000

Notes: Values are shown for counties east of the 100th meridian. Temperature and precipitation 
are measured over the main April–September growing season. Shading of each map corresponds 
to shading of the bins in the histogram beneath the plot.
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how they extrapolate to future warming scenarios. If farmers failed to adapt in the 
past because they did not recognize the climate was changing, but in the future they 
become aware of these changes and quickly adapt, then our findings would be a 
poor guide to future impacts of warming. On the other hand, if farmers had recog-
nized the need for adaptation but were unable to do so, then their past responses to 
extreme heat exposure would provide a plausible “ business-as-usual” benchmark 
for the impacts of future warming in the absence of unprecedented adaptation.

While we cannot directly observe farmer perceptions of climate change, there is 
both theoretical and empirical guidance on which locations should be more likely 
to have learned about the negative effects of extreme heat or to have recognized 
that the climate was changing: locations that faced larger exposure to extreme heat 
in an earlier period, locations where the underlying temperature variance is lower 
(making any warming “signal” stronger), locations with better educated farm-
ers, or locations where voting behavior suggest that a belief in climate change is 
more likely. We find no evidence that farmers in such areas responded any differ-
ently to extreme heat exposure than farmers previously  unexposed, less educated, 
or in more  climate-change-skeptical regions, providing suggestive evidence that 
adaptation was not limited by a failure of recognition. Nevertheless, our inabil-
ity to directly observe farmer perceptions means that we cannot rule out that the 
observed lack of adaptation was driven by a difficulty in recognizing that climate  
was changing.

As a final exercise, we combine our long differences estimates with output from 
18 global climate models to project the impacts of future climate change on the 
productivity of corn, a crop increasingly intertwined with the global food and fuel 
economy. Such projections are an important input to climate policy discussions, but 
bear the obvious caveat that they constrain future adjustment capabilities to what 
farmers were capable of in the recent past. Nevertheless, because our projections 
are less dependent on large  out-of-sample extrapolation, and because they account 
for farmers’ recent ability to adapt to  longer run changes in climate, we believe they 
are a substantial improvement over existing approaches. Our median estimate is that 
corn yields will be about 15 percent lower by  mid-century relative to a world with-
out climate change, with some climate models projecting losses as low as 7 percent 
and others as high as 64 percent. Valued at current prices and production quantities, 
this fall in corn productivity in our sample counties would generate annual losses 
of $6.7 billion dollars by 2050. We note that a 15 percent yield loss is on par with 
the estimated  15–25 percent productivity losses resulting from the  well-publicized 
“extreme” drought and heat wave that struck the US midwest in the summer of 
2012.3 Given the substantial role that corn plays in US agricultural production and 
the dominant role that the United States plays in the global trade of corn, these 
results imply substantial damages to US producers and global consumers of corn if 
the more negative outcomes in this range are realized.

3 For instance, see http://www.ers.usda.gov/topics/ in-the-news/ us-drought-2012-farm-and-food-impacts.aspx. 
Estimated losses in 2012 depend on whether the comparison is against previous season’s yield or the yield projected 
at planting in 2012, and appear to range between roughly  15–25 percent. 

http://www.ers.usda.gov/topics/<00AD>in-the-news/<00AD>us-drought-2012-farm-and-food-impacts.aspx
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Our work contributes to the rapidly growing literature on climate impacts, and in 
particular to a host of recent work examining the potential impacts of climate change 
on US agriculture (Mendelsohn, Nordhaus, and Shaw, 1994; Schlenker, Hanemann, 
and Fisher 2005; Deschênes and Greenstone 2007; Schlenker and Roberts 2009; 
Fisher et al. 2012). We build on this work by directly quantifying how farmers have 
responded to  longer run changes in climate, and are able to construct projections of 
future climate impacts that account for this observed ability to adjust.

Methodologically our work is closest to Dell, Jones, and Olken (2012) and to 
Lobell and Asner (2003). Dell, Jones, and Olken (2012) focus on panel estimates 
of the impacts of  country-level temperature variation on economic growth, but also 
use  cross-country differences in recent warming to estimate whether there has been 
“ medium-run” adaptation. Their point estimates suggest little difference between 
responses to  short-run fluctuations and  medium-run warming, but estimates for the 
latter are imprecise and not always significantly different from zero, meaning that 
large adaptation cannot be ruled out. Lobell and Asner (2003) study the effect of 
trends in average temperature on trends in US crop yields, finding that warmer aver-
age temperatures are correlated with declining yields. We build on this work by 
providing more precise estimates of recent adaptation, and by accounting more fully 
for  time-trending unobservables that might otherwise bias estimates.

Our findings also relate to a broader literature on  long-run economic adjustments. 
A body of historical research suggests that economic productivity often substantially 
recovers in the longer run after an initial negative shock (Davis and Weinstein 2002, 
Miguel and Roland 2011), and that in the long run farmers in particular are able 
to exploit conditions that originally appeared hostile (Olmstead and Rhode 2011). 
Somewhat in contrast, Hornbeck (2012) exploits variation in soil erosion during the 
1930s American Dust Bowl to show that negative environmental shocks can have 
substantial and lasting effects on productivity. Using data from a more recent period, 
we examine responsiveness to a  slower moving environmental “shock” that is very 
representative of what future climate change will likely bring. Similar to Hornbeck 
(2012), we find limited evidence that agricultural productivity has adapted to these 
environmental changes, with fairly negative implications for the future impacts of 
climate change on the agricultural sector.

The remainder of this paper is organized as follows. In Section I we develop a 
simple model of farmer adaptation and use it to motivate our empirical approach. 
Section II describes our main results on the extent of past adaptation, and Section III 
attempts to interpret the lack of adaptation that we observe. Section IV uses data from 
global climate models to build projections of future yield impacts, and Section V 
concludes and discusses implications for policy.

I. Model and Empirical Approach

Agriculture is a key sector where future climate change is estimated to have 
large detrimental effects, and is a primary focus of the empirical literature on cli-
mate change impacts. To formalize the ways in which our identification of climate 
impacts differs from that of past literature, we develop a simple model of farmer 
adaptation, building on earlier work by Kelly, Kolstad, and Mitchell (2005). The 
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climate literature generally understands adaptation as any adjustment to a changing 
environment that exploits beneficial opportunities or moderates negative impacts.4 
Adaptation thus requires an agent to recognize that something in her environment 
has changed, to believe that an alternative course of action is now preferable to her 
current course, and to have the capability to implement that alternative course.

We consider a farmer facing a choice about which of two crop varieties to grow, 
where one performs relatively better in cooler climates (variety 1) and the other in 
warmer climates (variety 2). We assume this relative performance is known to the 
farmer. Denote the choice of variety for farmer  i  as   x it   ∈ {0, 1}  , with   x it   = 1  the 
choice to grow the relatively  heat-tolerant variety 2. The output of farmer  i  in period  
t  is   y it   = f ( x it  ,  z it  )  , where   z it    is realized temperature in period  t  and is drawn from a 
normal distribution with mean   ω t    and variance   σ   2  . We assume a quadratic overall 
production technology with respect to temperature:

(1)   y it   =  β 0   +  β 1    z it   +  β 2    z  it  2  +  x it  ( α 0   +  α 1    z it   +  α 2    z  it  2 ), 

with production for the conventional variety given by   β 0   +  β 1    z it   +  β 2    z  it  2   , and the 
differential productivity between the conventional and  heat-tolerant varieties given 
by   α 0   +  α 1    z it   +  α 2    z  it  2  .

The farmer in year  i  chooses   x it    to maximize expected output prior to realizing 
weather. The  heat-tolerant crop will be chosen if  E ( α 0   +  α 1    z it   +  α 2    z  it  2 ) > 0  , which 
can be rewritten as

(2)   α 0   +  α 1   ω t   +  α 2  ( ω  t  2  +  σ   2 ) > 0. 

We assume that the  α  and  β  parameters are known to the farmer but not to the 
econometrician. Figure 2 displays the productivity of the two varieties as a func-
tion of temperature. As drawn, the productivity frontiers have similar concavity5  
(  α 2   ≈ 0 ) such that the perfectly informed farmer adopts the  heat-tolerant crop when 
the expected temperature exceeds   ω ̃   .

We incorporate climate change as a shift in mean temperature from  ω → ω  ′, with  
ω <  ω ̃   < ω ′. In keeping with evidence from climate science (see Meehl et al. 2007), 
we assume that this increase in mean is not accompanied by a change in variance, such 
that after climate change the farmer experiences   z it   ∼ N (ω′,  σ   2 )  in each year. A fully 
informed farmer recognizes this change and immediately adopts the  heat-tolerant 
crop, which we consider “adaptation.” In reality, farmers likely learn about changes 
in climate over time and only adjust behavior after acquiring strong enough infor-
mation that climate has changed. Following Kelly, Kolstad, and Mitchell (2005), 
we assume this learning follows a simple Bayesian process where the farmer has a 

4 See Zilberman, Zhao, and Heiman (2012) and Burke and Lobell (2010) for an overview. 
5 A negative value of   α 2    would indicate that productivity of the  heat-tolerant crop is more responsive to tem-

perature changes (i.e., the productivity or profit frontier for the  heat-tolerant crop is “more concave”). In this case, if 
climate variability is large, then the expected gain from adaptation at average climate must be large enough to offset 
expected losses in bad years. With   α 2   > 0  , the response function for the heat tolerant crop is “flatter” such that the 
farmer is willing to adopt the heat tolerant crop before the intersection of the two curves because of the increased 
certainty that it provides. 
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prior belief about   ω t    but knows that this belief is imperfect. We denote the belief as   
μ t    and its variance as  1/ τ t    , such that in period  t  the farmer believes  ω ∼ N ( μ t  , 1/ τ t  ) .  
In each period she observes   z it    and updates her belief about the average tempera-
ture to   μ t+1    using a weighted combination of her prior belief and the new climate 
realization she experiences. Letting  ρ = 1/ σ   2   and    z ̅    the average of the temperature 
realizations during the previous  t − 1  years, the farmer’s belief about mean climate 
after t years is given by DeGroot (1970):

(3)   μ t   =    τ t    μ t   + tρ  z ̅   _  τ t   + tρ   .

With   τ t+1   =  τ t   + ρ  , then in expectation it follows that:

(4)   μ t   − ω′ =    τ 0  ( μ 0   − ω′ )  ________  τ 0   + tρ   .

Equation (4) has two important implications: beliefs about mean temperature con-
verge to the true value as the number of time periods increases ( t ↑ ), and converge 
more quickly when there is less variance in annual temperature (i.e., when  ρ  is 
larger). This suggests that farmers should be more likely to recognize changes in 
climate—and thus adapt to those changes, if information is a constraint to adapta-
tion—in areas where the temperature variance is low, and when they are given more 
time to observe realizations of the new climate. We use these predictions to help us 
interpret our main findings in what follows.

Our model can be extended to allow a richer learning environment where a farmer 
learns about the temperature in her own county from weather realizations in both 
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Figure 2. Productivity of Two Different Corn Varieties as a Function of Temperature
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her own county and neighboring counties. Extending the model in this way has two 
implications. First, the farmer will learn about a vector of average temperatures 
where the vector of beliefs is a (weighted) linear combination of the vector of prior 
beliefs and the vector of means of realized weather.6 Second and more importantly, 
in settings where mean temperatures are highly correlated across nearby counties 
but annual weather realizations are less correlated, the ability to learn from other 
counties can cause the belief about one’s own county to converge faster to the true 
mean temperature—although as we show using simulation in online Appendix A.1, 
the benefits of this additional information appear relatively modest. In Section IIIE, 
we nevertheless extend our empirical approach to test for whether observation of 
temperature in other counties in the same state accelerated farmer learning and 
adaptation.

A. Existing Approaches

Returning to Figure 2, the  long-term damages imposed by a shift in climate will 
be   v 0   −  v 1    if adaptation takes place.7 Past literature has taken two approaches to 
estimating this quantity. In pioneering work, Mendelsohn, Nordhaus, and Shaw 
(1994) use  cross-sectional variation in average temperature and precipitation (and 
their squares) to explain variation in agricultural outcomes across US counties. The 
cross-sectional specification is

(5)   y i   = α +  β 1   w i   +  β 2   w  i  2  +  c i   +  ε i  , 

where   y i    is some outcome of interest in county  i  ,   w i    is again the average tempera-
ture, and   c i    other time invariant factors affecting outcomes (such as soil quality). 
Mendelsohn, Nordhaus, and Shaw’s (1994) preferred dependent variable is land val-
ues, which represent the present discounted value of the future stream of profits that 
could be generated with a given parcel of land, and thus in principle embody any 
possible  long-run adaptation to average climate. Therefore, a county with average 
temperature of  ω  will achieve   v 0    on average, a county with average temperature of 
 ω   ′ will achieve   v 1    , and the estimates of   β 1    and   β 2    along with a projected rise in 
average temperatures from  ω  to  ω ′ would seem to identify the desired quantity of   
v 0   −  v 1   .

Cross-sectional models in this setting make an  oft-criticized assumption: that 
average climate is not correlated with other unobserved factors (the   c i     —soil quality, 
labor productivity, technology availability, etc.) that also affect outcomes of interest 
(Schlenker, Hanemann, and Fisher 2005; Deschênes and Greenstone 2007). Given 
these omitted variables concerns, more recent work has used panel data to explore 

6 Denoting   μ t    as the farmer’s vector of beliefs after t years,  μ  as the vector of prior beliefs,    z ̅    as the vector 
of mean realizations,  Φ  as the precision matrix of the prior beliefs, and  Ω  as the precision matrix of the annual 
observations of weather, the farmer’s vector of beliefs after  t  periods is (DeGroot 1970):   μ t   =  (Φ + t Ω)   −1 
(Φμ + t Ω  z ̅  ) . 

7 Kelly, Kolstad, and Mitchell (2005) call this the “equilibrium response,” in contrast to the costs incurred when 
undertaking adaptation (e.g., the purchase of a more expensive  heat-tolerant variety), which they term “adjustment 
costs.” 
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the relationship between agricultural outcomes and variation in temperature and 
precipitation (Deschênes and Greenstone 2007; Schlenker and Roberts 2009; Welch 
et al. 2010; Lobell, Schlenker, and  Costa-Roberts 2011).8 The data generating pro-
cess in this approach is:

(6)   y it   = α +  β 1   z it   +  β 2   z  it  2  +  c i   +  ε it   .

All time invariant factors are absorbed by the location fixed effects   c i    , and impacts 
of temperature and precipitation on (typically annual) outcomes are thus identified 
from deviations from  location-specific means.9 Because this  year-to-year variation in 
temperature and precipitation (typically termed “weather”) is plausibly exogenous, 
fixed effects regressions overcome omitted variables concerns with  cross-sectional 
models, and the effect of temperature on outcomes such as yield or profits can be 
interpreted causally.

Many studies then combine the estimated  short-run responses from panel regres-
sions with output from global climate models to project potential impacts under 
future climate change.10 In making these projections, the implicit assumption is 
again that  short-run responses to variation in weather are representative of how farm-
ers will respond to  longer run changes in average climate. It is not obvious this will 
be the case. Consider a panel covering many years, with a temperature rise from  ω  to  
ω ′ occuring somewhere within these years. The panel model would identify move-
ment along either one of the two curves shown in Figure 2, with the point estimate 
being a weighted average of the slopes of the two curves, with weights depending 
on if and when the varietal switch occurred. If the  heat-tolerant crop is adopted at 
the end of the period, then fixed effects estimates will be heavily weighted towards 
the curve for the conventional crop, overstating equilibrium losses. If adaptation is 
instantaneous, then fixed effects estimates trace out the curve for the  heat-tolerant 
crop, which could understate impacts if (as drawn) the slope of the response func-
tion is positive at  ω ′. Thus, estimates of  short-run responses to weather will not even 
bound estimates of  longer run response to climate. Panel models therefore solve 
identification problems in the  cross-sectional approach, at the cost of more poorly 
approximating the idealized climate change experiment.

8 Examples in the climate literature outside of agriculture include Burke et al. (2009); Deschênes and Greenstone 
(2011); Auffhammer and Aroonruengsawat (2011); Dell, Jones, and Olken (2012). 

9 McIntosh and Schlenker (2006) show that including a quadratic term in the standard panel fixed effects model 
allows unit means to  re-enter the estimation. Inclusion of a squared term therefore results in impacts of the inde-
pendent variable of interest being derived not only from  within-unit variation over time but also from  between-unit 
variation in means. In principle, this would allow for estimation of the outer as well as the inner envelope, a strategy 
explored by Schlenker (2006), although it is not clear that omitted variables concerns have not also  re-entered the 
estimation along with the unit means. In any case, growing degree days allow temperature to enter  nonlinearly with-
out the complication of the quadratic term, and we exploit this fact to generate estimates of adaptation. Furthermore, 
using trends in climate to identify climate sensitivities remains an arguably more “direct” approach to understand-
ing  near-term impacts of future climate change, and is thus the approach we take here. 

10 See Burke et al. (2015) for a review of these studies and for the use of global climate models in this context. 
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B. the Long Differences Approach

We attempt to simultaneously overcome the limitations of both the  cross-sectional 
and panel approaches by long differencing. We construct longer run yield and tem-
perature averages at two different points in time for a given location, and calculate 
changes in average yields as a function of changes in average temperature. Consider 
two  multiyear periods denoted “a” and “b,” each spanning  n  years. Our approach 
is to separately sum over all the years in each period, e.g., with the average yield 
in period  a  given by   _  y ia     =   1 _ n    ∑ t∈a      y it    and average temperature   _  z ia      representing the 
averaged   z it   ’s over the same period. The resulting equation for period  a  is:

(7)   _  y ia     = α +  β 1   
_  z ia     +  β 2    

_  z ia       2  +  c i   +  _  ε ia    . 

Defining period  b  similarly, we can “long difference” over the two periods to get:

(8)   _  y ib     −  _  y ia     =  β 1  ( 
_  z ib     −  _  z ia    )  +  β 2  (  

_  z ib       2  −   _  z ia       2 )  +  ( c i   −  c i  )  +  ( _  ε ib     −  _  ε ia    ) .

The  time-invariant factors drop out, and we can rewrite as:

(9)  Δ _  y i     =  β 1  Δ _  z i     +  β 2  Δ ( _  z i    )   2  + Δ ε i  ,  

generating unbiased estimates of   β 1    and   β 2    requires that changes in temperature 
between the two periods are not correlated with  time-varying unobservables that 
also affect outcomes of interest. Below we provide evidence that differential climate 
trends across our sample of US counties are likely exogenous and surprisingly large.

Estimating the impact of climate on agricultural productivity with the long differ-
ences approach in (9) offers substantial advantages over both the  cross-sectional and 
panel approaches. First, it arguably better approximates the ideal “parallel worlds” 
experiment. That experiment randomly assigns climate trends to different earths, and 
the long differences approximation utilizes variation in  longer run climate change 
that is unlikely to be correlated with variables that explain changes in yield. Second, 
unlike the  cross-sectional approach, the long differences estimates are immune to 
 time-invariant omitted variables, and unlike the panel approach the relationship 
between climate and agricultural productivity is estimated from  long-term changes 
in average conditions instead of  short-run  year-to-year variation. Finally, because 
long differences estimates will embody any adaptations that farmers have under-
taken to recent trends, and because the range in these trends falls within the range 
of projected climate change over at least the next three decades, then projections 
of future climate change impacts on agricultural productivity based on long differ-
ences estimates would appear more trustworthy than those based on either panel or 
 cross-sectional methods.

We then use this strategy to quantify the extent of recent adaptation in US agricul-
ture, comparing our long differences estimates to those from an annual panel model. 
We would interpret more positive long difference estimates as evidence of adapta-
tion: that farmers are better able to adjust to  longer run changes in climate than they 
are to  shorter run changes in weather. In Figure 2, if any adaptation takes place, the 
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long differences approach should identify   v 0   −  v 1   . If no adaptation occurs, then long 
difference regressions will identify   v 0   −  v 2   , i.e., the same damages identified by 
the panel model. We attempt to rule out other explanations for divergence between 
panel and  long-differences estimates—e.g., measurement error, or adaptation out-
side of agriculture—in Section III.

C. Data and Estimation

Our agricultural data come from the United States Department of Agriculture’s 
National Agricultural Statistics Service. Crop area and yield data are available at the 
 county-year level, and economic measures of productivity such as total revenues and 
agricultural land values are available every five years when the Agricultural Census 
is conducted.11 Our unit of observation is thus the county, and in keeping with the 
literature we focus the main part of the analysis on counties that are east of the one 
hundredth meridian. The reason for this is that cropland in the American West typ-
ically relies on highly subsidized irrigation systems, and the degree of adaptation 
embodied in the use and expansion of these systems might poorly extrapolate to 
future scenarios as the federal government is unlikely to subsidize new water proj-
ects as extensively as it has in the past (Schlenker, Hanemann, and Fisher 2005). 
Over the last decade, the counties east of the 100th meridian accounted for 93 per-
cent of US corn production and 99 percent of US soy production.

Our climate data are drawn from Schlenker and Roberts (2009) and consist of 
daily interpolated values of precipitation totals and maximum and minimum tem-
peratures for 4 kilometer (km) grid cells covering the entire United States over the 
period  1950–2005. These data are aggregated to the  county-day level by averaging 
daily values over the grid cells in each county where crops are grown, as estimated 
from satellite data.12

Past literature has demonstrated strong  nonlinearities in the relationship between 
temperature and agricultural outcomes (e.g., Schlenker and Roberts 2009). Such 
 nonlinearities are generally captured using the concept of growing degree days 
(GDD), which measure the amount of time a crop is exposed to temperatures 
between a given lower and upper bound. Following Schlenker and Roberts (2009), 
we use the  within-day distribution of temperatures to calculate the percent of each 
day that cropped area in each county is exposed to temperatures between given 
lower and upper bounds, and then sum these daily exposures over a fixed growing 
season (April 1 to September 30th) to get a measure of annual growing degree days 
for those bounds.

Using this notion of GDD, and using the county agricultural data described above, 
we model agricultural outcomes as a simple piecewise linear function of tempera-
ture and precipitation.13 We estimate the long differences model:

11 We thank Michael Roberts for sharing additional census data that are not yet archived online. 
12 We thank Wolfram Schlenker for sharing the weather data and the code to process them. 
13 We choose the piecewise linear approach for two reasons. First, existing work on US agricultural response 

to climate suggests that a simple piecewise linear function delivers results very similar to those estimated with 
much more complicated functional forms (Schlenker and Roberts 2009). Second, these other functional forms 
typically feature higher order terms, which in a panel setting means that  unit-specific means  re-enter the estimation 
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(10)  Δ y is   =  β 1  ΔgD D is;  l 0  : l 1     +  β 2  ΔgD D is;  l 1  :∞   +  β 3  ΔPre c is; p< p 0    

 +  β 4  ΔPre c is; p> p 0     +  α s   + Δ ε is  , 

where  Δ y is    is the change in some outcome  y  in county  i  in state  s  between two peri-
ods. In our main specification these two periods are 1980 and 2000, and we calculate 
endpoints as  five-year averages to more effectively capture the change in average 
climate or outcomes over time. That is, for the  1980–2000 period we take averages 
for each variable over  1978–1982 and over  1998–2002, and difference these two 
averages.

The lower temperature “piece” in (10) is the sum of GDD between the bounds   
l 0    and   l 1    , and  ΔgD D is;  l 0  : l 1      term gives the change in GDD between these bounds 
over the two periods. The upper temperature “piece” has a lower bound of   l 1    and 
is unbounded at the upper end, and the  ΔgD D is;  l 1  :∞    term measures the change in 
these GDD between the two periods.14 We also measure precipitation in a county 
as a piecewise linear function with a kink at   p 0   . The variable  Pre c is; p< p 0      is therefore 
the difference between precipitation and   p 0    interacted with an indicator variable for 
precipitation being below the threshold   p 0   .  Pre c is; p> p 0      is similarly defined for precip-
itation above the threshold.15 In the estimation we set   l 0   = 0  and allow the data to 
determine   l 1    and   p 0    by looping over all possible thresholds and selecting the model 
with the lowest sum of squared residuals.

Importantly, we also include in (10) a state fixed effect   α s   , which controls for 
any unobserved  state-level trends. This means that identification comes only from 
 within-state variation, eliminating any concerns of  time-trending unobservables at 
the state level. Finally, to quantify the extent of recent adaptation, we estimate a 
panel version of (10), where observations are at the  county-year level and the regres-
sion includes county and year fixed effects. As suggested by earlier studies (e.g., 
Schlenker and Roberts 2009), the key coefficient in both models is likely to be   β 2    , 
which measures how corn yields are affected by exposure to extreme heat. If farm-
ers adapt significantly to climate change then we would expect the coefficient   β 2    to 
be significantly larger in absolute value when estimated with panel fixed effects as 
compared to our long differences approach. The value  1 −  β  2  LD / β  2  FE    gives the per-
centage of the negative  short-run impact that is offset in the longer run, and is our 
measure of adaptation to extreme heat.

There are two potential concerns with our empirical approach. The first is that 
the inclusion of state fixed effects could absorb most of the variation of interest in 
our temperature variables. Second, our supposed differential trends in temperature 

(McIntosh and Schlenker 2006). This not only raises omitted variables concerns, but it complicates our strategy for 
estimating the extent of past adaptation by comparing long differences with panel estimates; in essence, identifica-
tion in the panel models is no longer limited to  location-specific variation over time. 

14 As an example, if   l 0   = 0  and   l 1   = 30  , then a given set of daily average temperatures of −1, 0, 1, 10, 29, 31, 
and 35 would result in  gD D is;  l 0  : l 1      equal to 0, 0, 1, 10, 29, 30, and 30, and  gD D is;  l 1  :∞    equal to 0, 0, 0, 0, 1, and 5. In 
practice, we use the  within-day distribution of temperatures to allow fractions of days to be spent above or below a 
given threshold, but the principle is the same. 

15 A simple example is useful to illustrate the differencing of precipitation variables when the threshold is 
crossed between periods. Consider a county with an increase in average precipitation from 35 millimeter (mm) 
in 1980 to 50 mm in 2000. If the precipitation threshold is 40 mm, then  ΔPre c is; p< p 0     = 5  and  ΔPre c is; p> p 0     = 10 . 
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across counties could just be driven by  short-run variation in weather around the 
chosen endpoint years. This has two potential implications. First, there could have 
been little “true” long-run change in temperature to adapt to. Second, even if tem-
perature was trending differentially across counties, our long differences estimator 
might mechanically deliver estimates that are similar to those from a  county-year 
panel if  interannual variation in temperature around this trend (i.e., weather) was 
large. In Section A2 of the online Appendix, we explore each of these issues in more 
detail. We first demonstrate that the residual variation in our temperature changes 
of interest remains large (even relative to projected future changes) after accounting 
for state fixed effects, and that this variation very likely represents true  long-run 
increases in temperature rather than large variation in chosen endpoint years. 
Second, we clarify under what conditions the panel and long differences approaches 
will differentially identify “true”  long-run and  short-run responses to changes in 
temperature, and demonstrate via simulation that our long differences estimates are 
likely based on agents’ responses to  longer run changes in temperature.

Figure 1 displays the variation that is used in our identification strategy. Some US 
counties have cooled slightly over the past three decades, while others have experi-
enced warming equivalent to over 1.5 times the standard deviation of local tempera-
ture—roughly equivalent to the mean warming projected by global climate models 
to occur over US corn area by 2030. Differential trends in precipitation over the 
 1980–2000 period have been similarly large, with precipitation decreasing by more 
than 30 percent in some counties and increasing by 30 percent in others—a range 
that again almost fully contains the range in climate model projections of future pre-
cipitation change over the same area by the  mid-21st century. Substantial variation 
is apparent even within states. For instance, Lee County in the southeastern Iowa 
experienced an increase in average daily temperature during the main corn grow-
ing season of 0.46°C, and Mahaska County—approximately 80 miles to the north-
west—experienced a decrease in temperature of 0.3°C over the same period. Corn 
yields in parts of northern Kentucky declined slightly while rising by  20–30 percent 
only 100 miles to the south.

Importantly, there remains large variation in our main regressor of interest 
(exposure to extreme heat) even after conditioning on other climate variables and 
state fixed effects (see Table A.1 in the online Appendix), and as shown in online 
Appendix Figure A.4, this variation substantially overlaps projections from global 
climate models of future changes in extreme heat exposure. This means that apply-
ing our estimates to predictions from climate models is not asking our model to 
extrapolate far out of sample.

While we explore robustness of our results to different time periods and differ-
encing lengths, we focus on the  post-1980 period for a number of reasons. First, 
warming trends since 1980 were much larger than in earlier periods. For instance, 
over the  1960–1980 period, only half of the counties in our sample experienced aver-
age warming, and none experienced warming of more than 1°C (see Figure A.11 in 
the online Appendix). Second, recognition of climate change was much higher in 
this later period, which helps alleviate some concerns that a lack of recognition of 
climate change is what is driving our results. In particular, prior to 1980 there was 
even significant scientific and popular concern about the risks from “global cooling” 
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(e.g., Gwynne 1975), and only during the 1980s and 1990s was there growing rec-
ognition that the climate was warming and that increasing greenhouse gas emissions 
meant there would very likely be further warming in the future.

D. Are recent climate trends Exogenous?

There are a few potential violations to the identifying assumption in (10). The first 
is that trends in local emissions could affect both climate and agricultural outcomes. 
In particular, although greenhouse gases such as carbon dioxide typically become 
“well mixed” in the atmosphere soon after they are emitted, other species such as 
aerosols are taken out of the atmosphere by precipitation on a time scale of days, 
meaning that any effect they have will be local. Aerosols both decrease the amount 
of incoming solar radiation, which cools surface temperatures and lowers soil evap-
oration, and they tend to increase cloud formation, although it is somewhat ambigu-
ous whether this leads to an increase in precipitation. For instance, Leibensperger et 
al. (2011) found that peak aerosol emissions in the United States during the 1970s 
and 1980s reduced surface temperatures over the central and  Mid-Atlantic United 
States by up to 1°C, and led to modest increases in precipitation over the same 
region.

The effect of aerosols on crops is less well understood (Auffhammer, Ramanathan, 
and Vincent 2006). While any indirect effect through temperature or precipitation 
will already be picked up in the data, aerosols become an omitted variables concern if 
their other influence on crops—namely their effect on solar radiation—have import-
ant effects on crop productivity. Because crop productivity is generally thought to 
be increasing and concave in solar radiation, reductions in solar radiation are likely 
to be harmful, particularly to   c 4    photosynthesis plants like corn that do not become 
light saturated under typical conditions.16 However, aerosols also increase the “dif-
fuse” portion of light (think of the relatively even light on a cloudy day), which 
allows additional light to reach below the canopy, increasing productivity. A recent 
modeling study finds negative net effects for corn, with aerosol concentrations (circa 
the year 2000) reducing corn yields over the Midwest by about 10 percent, albeit 
with relatively large error bars. This would make it likely that, if anything, aerosols 
will cause us to understate any negative effect of warming on crop yields: aerosols 
lead to both cooling (which is generally beneficial in our sample) and to a reduction 
in solar radiation (which on net appears harmful for corn). In any case, the inclusion 
of state fixed effects means that we would need significant  within-state variation in 
aerosol emissions for this to be a concern.

The second main omitted variables concern is changes in local land use. Evidence 
from the physical sciences suggests that conversion between types of land (e.g., con-
version of forest to pasture, or pasture to cropland), or changes in management prac-
tices within  pre-existing farmland (e.g., expansion of irrigation) can have significant 

16 Crops that photosynthesize via the   c 3    pathway, which include wheat, rice, and soybeans, become “light sat-
urated” at  one-third to  one-half of natural sunlight, meaning that reductions in solar radiation above that threshold 
would have minimal effects on productivity.   c 4    plants such as corn do not light saturate under normal sunlight, so 
are immediately harmed by reductions in solar radiation (Greenwald et al. 2006). 
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effects on local climate. For instance, expansion in irrigation has been shown to 
cause local cooling (Lobell, Bala, and Duffy 2006), which would increase yields 
both directly (by reducing water stress) and indirectly (via cooling), leading to a 
potential omitted variables problem. The main empirical difficulty is that local land 
use change could also be an adaptation to changing climate—i.e., a consequence 
of a changing climate as well as a cause. In the case of irrigation, adaptation and 
 irrigation-induced climate change are likely to go in opposite directions: if irrigation 
is an omitted variable problem, we would need to see greater irrigation expansion 
in cooler areas, whereas if irrigation is an adaptation, we would expect relatively 
more expansion in warm areas. Overall, though, because we see little change in 
either land area or land management practices, we believe these omitted variables 
concerns to be limited as well.

The most recent evidence from the physical sciences suggests that the large dif-
ferential warming trends observed over the United States over the past few decades 
are likely due to natural climate variability—in particular, to variation in ocean 
temperatures and their consequent effect on climate over land through increased 
localized precipitation (which leads to local cooling) or through cold air flowing in 
from the north (Meehl, Arblaster, and Branstator 2012), effects which need not be 
homogenous within states. As such, these trends appear to represent a true “natural 
experiment,” and are likely exogenous with respect to the outcomes we wish to 
measure. Nevertheless, as a final check on exogeneity, we show in online Appendix 
Table A.2 that the  within-state change in exposure to extreme heat during the 
 1980–2000 period are not strongly correlated with several  county-level covariates.

II. Empirical Results

Our primary analysis focuses on the effect of  longer run changes in climate on 
the productivity of corn and soy, the two most important crops in the United States 
in terms of both area sown and production value. The yield (production per acre) of 
these two crops is the most basic measure of agricultural productivity, and is well 
measured annually at the county level. However, because a focus on yields alone 
will not cover the full suite of adaptations that farmers might have employed, we 
then examine adjustments along other possible margins.

A. corn Productivity

The results from our main specifications for corn yields are given in Table 1 and 
shown graphically in Figure 3. In our piecewise linear approach, productivity is 
expected to increase linearly up to an endogenous threshold and then decrease lin-
early above that threshold, and the long differences and panel models reassuringly 
deliver very similar temperature thresholds (29°C and 28°C, respectively) and pre-
cipitation thresholds (42 centimeter (cm) and 50 cm). In columns  1–4 we run both 
models under the thresholds selected by the long differences, and in columns  5–8 we 
fix thresholds at values chosen by the panel.

The panel and long differences models deliver very similar estimates of the 
responsiveness of corn yields to temperature. Exposure to GDD below 29°C (row 1) 
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Table 1—Comparison of Long Differences and Panel Estimates  
of the Impacts of Temperature and Precipitation on US Corn Yields

Diffs Diffs Panel Panel Diffs Diffs Panel Panel
(1) (2) (3) (4) (5) (6) (7) (8)

GDD below −0.0001 0.0002 0.0004 0.0002 −0.0001 0.0003 0.0005 0.0003
 threshold (0.0003) (0.0002) (0.0001) (0.0001) (0.0003) (0.0002) (0.0001) (0.0001)
GDD above −0.0053 −0.0044 −0.0056 −0.0062 −0.0043 −0.0037 −0.0048 −0.0054
 threshold (0.0010) (0.0008) (0.0006) (0.0007) (0.0009) (0.0009) (0.0005) (0.0006)
Precip below 0.0515 0.0297 0.0118 0.0095 0.0253 0.0115 0.0068 0.0057
 threshold (0.0194) (0.0125) (0.0027) (0.0048) (0.0123) (0.0046) (0.0015) (0.0019)
Precip above 0.0036 0.0034 −0.0008 0.0001 0.0024 0.0029 −0.0018 −0.0008
  threshold (0.0017) (0.0008) (0.0005) (0.0004) (0.0015) (0.0007) (0.0007) (0.0005)
Constant 0.2655 0.2397 3.5721 4.1872 0.2674 0.2400 3.2423 3.8577 

(0.0319) (0.0124) (0.2491) (0.3013) (0.0307) (0.0115) (0.2647) (0.3349)

Observations 1,531 1,531 48,465 48,465 1,531 1,531 48,465 48,465
r2 0.258 0.610 0.590 0.863 0.243 0.602 0.593 0.864
Fixed effects None State Cty, Yr Cty, State-Yr None State Cty, Yr Cty, State-Yr
T threshold 29°C 29°C 29°C 29°C 28°C 28°C 28°C 28°C
P threshold 42 cm 42 cm 42 cm 42 cm 50 cm 50 cm 50 cm 50 cm

Notes: Data are for US counties east of the 100th meridian, 1980–2000. Specifications 1–2 and 5–6 are estimated 
with long differences and 3–4 and 7–8 with an annual panel, with different fixed effects shown at bottom; see text 
for details. Specifications 1–4 use piecewise linear thresholds as chosen by the long differences model, and 5–8 use 
thresholds as chosen by the panel model. Regressions are weighted by 1980 county corn area (long differences) or 
by 1980–2000 average corn area (panel). Standard errors are clustered at the state level.
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given °C temperature relative to a day spent at 0°C, as estimated by long differences (dark black 
line) and panel models (dashed grey line). The shaded area gives the confidence interval around 
the long differences estimates.
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have small and generally insignificant effects on yields, but increases in exposure 
of corn to temperatures above 29°C result in sharp declines in yields, as is seen in 
the second row of the table and in Figure 3. In our most conservative specification 
with state fixed effects, exposure to each additional  degree-day of heat above 29°C 
results in a decrease in overall corn yield of 0.44 percent.17 The panel model deliv-
ers a slightly more negative point estimate, a −0.56 percent yield decline for every 
one degree increase above 29°C, but (as quantified below) we cannot reject that 
the estimates are the same. We obtain similar results when the two models are run 
under the temperature and precipitation thresholds chosen by the panel model (col-
umns  5–8), and similar results when the panel model is estimated with  state-by-year 
fixed effects rather than year fixed effects.

The estimates of the effects of precipitation on corn productivity are somewhat 
more variable. The piecewise linear approach selected precipitation thresholds at 
42 cm (long differences) or 50 cm (panel), but most of the variation in precipitation 
is at values above 42 cm—e.g., the tenth percentile of annual county precipitation 
is 41.3 cm. Long differences point estimates suggest an approximate increase in 
yields of 0.33 percent for each additional centimeter of rainfall above 42 cm, which 
are of the opposite sign and substantially larger than panel estimates. Nevertheless, 
we note that even the long differences precipitation estimates remain quite small 
relative to temperature effects: on a growing season precipitation sample mean of 
57 cm, a 20 percent decrease (roughly the most negative climate model projection 
for US corn area by the end of the century) would reduce overall yields by less 
than 4 percent. Given that precipitation is likely measured with greater error than 
temperature, we cannot rule out that our results understate the role of precipitation 
changes in corn yields (Lobell 2013). But as we show in Section IV, and consis-
tent with other recent findings (Schlenker and Roberts 2009; Schlenker and Lobell 
2010), any future impacts of climate change via changes in precipitation are likely 
to be dominated by changes in yields induced by increased exposure to extreme 
heat, even if precipitation is measured with some error.

To test robustness of the corn results, we show in the remainder of this subsec-
tion that our results are relatively insensitive to the choice of endpoint years, to the 
number of years used to calculate endpoints, and to an alternate estimation strategy 
that further weakens our identification assumptions. In online Appendix A.4, we 
provide further evidence that our results are insensitive to the exclusion of yield and 
temperature outliers, and to the inclusion of baseline covariates in the regression.

We first show that our results are largely unchanged when we change the time 
period under study. In particular, we estimate equation (10) varying   t 0    from 1955 
to 1995 in five year increments, and for each value of   t 0    we estimate 5, 10, 15, 20, 

17 While we prefer the more conservative specifications with state fixed effects in Table 1, one concern with the 
inclusion of state fixed effects is that farmer responses to increasing temperature might vary meaningfully at the 
state level, for instance if governments in states that experienced substantial warming helped their farmers invest 
in adaptation measures. These policies would be absorbed by the state fixed effects, and could obscure meaningful 
adaptation measures undertaken by farmers. Our results appear inconsistent with a story of  state-level adaptation 
to extreme heat. The effects of extreme heat in the specifications without state fixed effects (columns 1 and 4) are 
substantially more negative than in the comparable specifications with state fixed effects, which is the opposite of 
what would be expected if  state-level adaptation policies were an omitted variable in these regressions. 



VoL. 8 No. 3 123Burke and emerick: adaptation to climate change

25, and 30-year difference models.18 Results are shown graphically in Figure 4. 
We display the difference between the estimate of   β 2    for  1980–2000 (our baseline 
estimate) and the estimate of   β 2    for the period determined by the starting year and 
differencing length. The 95 percent confidence intervals of the differences are cal-
culated by bootstrapping.19 The average estimate of   β 2    across these 39 models is 
−0.0058, with only 8 of the estimates of   β 2    being statistically different from our 
main  1980–2000 estimate and none statistically different in the positive direction. 
This suggests if anything, that our baseline point estimate on the effect of extreme 
heat is conservative.20 We conduct an analogous exercise for the panel model to 
make sure that the effect of extreme heat in the panel does not vary with the chosen 

18 Some models of course could not be estimated since our data end at 2005, meaning our  five-year smoothed 
estimates are only available through 2003. In each model we limit the sample to the set of counties from Table 1. 
Each regression is weighted by five year average corn area during the starting year. The temperature and precipita-
tion thresholds are fixed at 29°C and 42 cm across models. 

19 We drew 1,000 samples of 31 states with replacement and estimated all regressions for each sample. The 
differences between the  1980–2000 estimate and all other possible estimates were calculated for each sample. The 
bootstrapped standard errors are the standard deviations of the differences in estimates. 

20 In online Appendix Figure A.10, we display the raw coefficients and their confidence intervals for each 
period: all estimates are negative, and in only 8 out of 39 cases do we fail to reject a significant negative effect of 
extreme heat on corn productivity. 
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Figure 4. Sensitivity of Results to Starting Year and Length of Differencing Period

Notes: Differences between main estimate from  1980–2000 (specification 2 in Table 1) and other estimates under 
various starting years and differencing lengths. Dots are differences in estimates and whiskers are 95 percent confi-
dence intervals of the differences. Standard errors are calculated by bootstrapping, where 1,000 samples of 31 states 
were drawn (with replacement) and the difference between estimates was calculated for each bootstrapped sample.
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time period. Results are plotted in online Appendix Figure A.12, and agree with 
earlier findings in Schlenker and Roberts (2009) that the effects of  interannual devi-
ations in extreme heat have not declined significantly over time.21

Section IC provides initial evidence that our “ long-run” differences over time 
reflect substantial longer run changes in climate rather than large  short-run variation 
around the endpoint years. To provide additional evidence that this is true, we recon-
struct our long differences with endpoints averaged over ten years rather than five, 
which should help average out idiosyncratic noise. As a further test, we utilize the 
entire  1950–2005 sample, split it into  28-year periods ( 1950–1977 and  1978–2005), 
average yield and climate within each period, and then difference the period and 
perform our long differences estimation. We vary the sample to include any county 
growing corn in either period, or all counties growing corn in either period (or some-
thing  in-between). As shown in online Appendix Table A.6, the effect of extreme heat 
is large, negative, and highly significant across all specifications, and these results 
again suggest if anything that our baseline results are conservative.

Finally, our estimates in equation (10) would be biased in the presence of 
 within-state  time-varying unobservables correlated with both climate and yields. To 
address this possibility, we use our many decades of data to construct a two period 
panel of long differences, which further weakens our identification assumption. We 
estimate the following model:

(11)  Δ y it   =  β 1  ΔgD D it;  l 0  : l 1     +  β 2  ΔgD D it;  l 1  :∞   +  β 3  ΔPre c it; p< p 0      

 +  β 4  ΔPre c it; p> p 0     +  α i   +  δ t   +  ε it  , 

where all variables are measured in 20-year differences with  t  indicating the 
time period over which the difference is taken. Unobserved differences in aver-
age  county-level trends are accounted for by the   α i    , and   δ t    accounts for any com-
mon trends across counties within a given period. The  β ’s are now identified off 
 within-county differences in climate changes over time, after having accounted for 
any differences in trends common to all counties. An omitted variable in this setting 
would need to be a  county-level variable whose trend over time differs across the 
two periods in a way correlated with the  county-level difference in climate changes 
across the two periods, and it is difficult to construct stories for omitted variables 
that meet these conditions.

In Table 2 we report estimates from both the  1955–1995 period and the  1960–2000 
period. In all models the effect of temperature above 29°C remains negative and 

21 While this unchanging sensitivity of yield to extreme heat over time could be interpreted as additional evi-
dence of a lack of adaptation (as in Schlenker and Roberts 2009), we note that whether responses to  short-run vari-
ation have changed over time is conceptually distinct from whether farmers have responded to  long-run changes in 
average temperature. As emphasized in our conceptual framework, there is no reason to expect farmers to respond 
similarly to these two different types of variation. Indeed, farmers could adapt completely to  long-run changes in 
temperature such that average yields do not change—e.g., by adopting a new variety that on average performs just 
as well in the new expected temperature as the old variety did under the old average temperature—but still face 
 year-to-year variation in yield due to random deviations in temperature about its new  long-run average. As such, 
we view this exercise more as a test of the robustness of the panel model than as evidence of (a lack of) adaptation 
per se. 
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 significant even after the inclusion of county fixed effects. The main coefficients for 
GDD  >  29 are also similar to our baseline estimates in Table 1. The main long differ-
ences estimates are therefore robust to controlling for a richer set of  county-specific 
 time-varying factors.

B. Adaptation in corn

Comparing panel and long differences coefficients provides an estimate of recent 
adaptation to temperature and precipitation changes, with  1 −  β  2  LD / β  2  FE   giving the 
share of the  short-run impacts of extreme heat that are offset in the longer run. 
Point estimates from Table 1 suggest that  22–23 percent of  short-term yield losses 
from exposure to extreme heat have been alleviated through longer run adap-
tations. To quantify the uncertainty in this adaptation estimate, we bootstrap our 
data 1,000 times (sampling states with replacement to account for spatial correla-
tion) and recalculate  1 −  β  2  LD / β  2  FE   for each iteration.22 We run this procedure for 
the  1980–2000 period reported in Table 1, and repeat it for the each of the 20, 
25, and  30-year intervals shown in Figure 4 that start in 1970 or later. The dis-
tribution of bootstrapped adaptation estimates then allow us to test, for each time 
period of interest, the null hypothesis of “no adaptation” to extreme heat—i.e., that 
 1 −  β  2  LD / β  2  FE  = 0 .

Results are shown in Figure 5 and suggest that, on the whole,  longer run adaptation 
to extreme heat in corn has been limited. Median estimates from each distribution all 

22 That is, we take a draw of states with replacement, estimate both long differences and panel model for those 
states, compute the ratio of extreme heat coefficients between the two models, save this ratio, and repeat 1,000 times 
for a given time period. 

Table 2—The Effect of Climate on Yields Estimated with a Panel of Differences

1955–1995 1955–1995 1960–2000 1960–2000
(1) (2) (3) (4)

GDD below threshold 0.0008 0.0007 0.0004 0.0003
(0.0003) (0.0004) (0.0001) (0.0002)

GDD above threshold −0.0066 −0.0058 −0.0031 −0.0023
(0.0013) (0.0020) (0.0007) (0.0010)

Precip below threshold 0.0356 0.0376 0.0203 0.0166
(0.0079) (0.0093) (0.0135) (0.0115)

Precip above threshold 0.0017 0.0033 0.0008 0.0014
(0.0015) (0.0017) (0.0015) (0.0020)

Observations 2,060 2,060 2,604 2,604
r2 0.621 0.565 0.688 0.699
Fixed effects State Yr Cty Yr State Yr Cty Yr
T threshold 29°C 29°C 29°C 29°C
P threshold 42 cm 42 cm 42 cm 42 cm

Notes: Dependent variable in all regressions is the difference in the log of smoothed corn yields. Data are a 
two period panel with 20-year differences. Periods are 1955–1975 and 1975–1995 in columns 1–2. Periods are 
1960–1980 and 1980–2000 in columns 3–4. The sample of counties is limited to the 1980–2000 corn sample from 
Table 1. Regressions in columns 1–2 are weighted by 1955 smoothed corn acres. Regressions in columns 3–4 are 
weighted by 1960 smoothed corn acres. Standard errors are clustered at the state level.
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indicate that adaption has offset less than 25 percent of short run impacts—and point 
estimates are actually slightly negative in  two-thirds of the cases. In almost all cases 
we can conclude that adaptation has offset at most half of the negative shorter run 
impacts of extreme heat on corn yields. Finally, all confidence intervals span zero, 
meaning we can never reject that there has been no more adaptation to extreme heat 
in the long run than has been in the short run ( one-sided  p-values on the test of the 
null against the alternative hypothesis that  1 −  β  2  LD / β  2  FE >0  are p = 0.14 or greater, 
as shown on the left of the figure).

C. Soy Productivity

All of our analysis up to this point has focused on corn, the dominant field crop 
in the United States by both area and value. It is possible, however, that the set of 
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Figure 5. Percentage of Short-Run Impacts Offset by Adaptation

Notes: Figure 5 shows the percentage of the short-run impacts of extreme heat on corn produc-
tivity that are mitigated in the longer run. Each box plot corresponds to a particular time period 
as labeled, and represent 1,000 bootstrap estimates of 1 −   β  2  

LD  /  β  2  
FE   for that time period. See text 

for details. The dark line in each distribution is the median, the grey box the interquartile range, 
and the whiskers represent the fifth to ninety-fifth percentile. The distribution plotted at bottom 
represents the combination of all the estimates in the above distributions. The values at left give 
the  one-sided  p-value on the test that 1 −   β  2  

LD  /  β  2  
FE   = 0. 
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available adaptations differs by crop and there could be additional scope for adap-
tation with other crops. Soy is the country’s second most important crop in terms of 
both land area and value of output. In online Appendix Figure A.14, we show the 
various estimates of the effect of extreme heat on log soy yields as derived from the 
long differences model. The horizontal line in each panel is the  1978–2002 panel 
estimate of   β 2    for soy which is −0.0047, almost identical to the corn estimate. The 
thresholds for temperature and precipitation are 29°C and 50 cm, which are those 
that produce the best fit for the panel model. While the soy results are somewhat 
noisier than the corn results, the average response to extreme heat across the 39 esti-
mates is −0.0032, giving us a point estimate of longer run adaptation to extreme 
heat of about 32 percent. This estimate is slightly larger but of similar magnitude to 
the corn estimate, and we are again unable to reject that the long differences esti-
mates are different than the panel estimates. As for corn, there appears to have been 
limited adaptation to extreme temperatures amongst soy farmers.

III. Alternate Explanations

Results so far suggest that corn and soy farmers are no more able to deal with 
increased extreme heat exposure over the long run than they are in the short run. 
We now explore the extent to which this limited apparent adaptation we observe in 
crop yields is due to (i) measurement error, (ii) selection into or out of agriculture, 
(iii) adaptation along other margins, (iv) disincentives induced by existing US gov-
ernment policy, (v) and/or a lack of recognition that climate is changing. Evidence 
in favor of the first two hypotheses would challenge the validity of results; evidence 
in favor of any of the last three would alter their interpretation, and could make our 
long difference estimates a potentially poor basis for projecting future impacts if 
policies or information were to change.

A. measurement Error

A key concern with fixed effects estimates of the impact of climate variation is 
attenuation bias caused by measurement error in climate variables. Fixed effects 
estimates are particularly susceptible to attenuation since they rely on  short-term 
deviations from average climate to identify coefficients. This makes it more difficult 
to separate noise from true variation in temperature and precipitation compared to 
a setting where identification comes from relatively  better measured averages over 
space or time (such as in our long differences results). Therefore one explanation for 
the limited observed yield adaptation is simply that panel estimates are attenuated 
relative to long differences estimates, and thus that comparing the two estimates will 
mechanically understate any adaptation that has occurred.

We first note that because temperature and precipitation are generally negatively 
correlated, measurement error in both climate variables is likely to partially off-
set the attenuation caused by  mismeasurement of temperature (Bound, Brown, and 
Mathiowetz 2001). With more rainfall helping yields and warmer temperatures 
harming them, classical measurement error in precipitation could bias the tem-
perature effect away from zero: the negative correlation between temperature and 
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 rainfall results in warmer years having artificially low yields due to attenuation in 
the precipitation variable. It is therefore not likely the case that the only effect of 
measurement error on the temperature coefficients is attenuation.23

We also follow Griliches and Hausman (1986) and investigate the potential for 
large attenuation in our fixed effects estimates by comparing different panel estima-
tors. If climate in a given county is highly correlated across time periods and mea-
surement error is uncorrelated between successive time periods, then as Griliches 
and Hausman (1986) show, random effects estimates should be larger in absolute 
value than the fixed effects estimates, which in turn should be larger than estimates 
using first differences. The intuition is that random effects estimates are identified 
using a combination of within and between variation and therefore are less prone 
to measurement error than fixed effects estimates and first differences, which rely 
entirely on  within-county variation. Online Appendix Table A.7 shows that esti-
mates from all three estimators are remarkably similar, providing suggestive evi-
dence that measurement error is not responsible for the similarity between fixed 
effects and long differences estimates.

B. Selection

A second explanation for the observed lack of adaptation is a selection story 
in which better performing farmers exit agriculture in response to warming tem-
peratures. This would leave the remaining population with lower average yields 
and thus create a mechanical negative relationship between warming temperatures 
and yields. Although the alternate selection story appears just as plausible—that 
better performing farmers are more able to maintain yields in the face of climate 
change, and the worse performers are the ones who exit—we can check in the data 
whether characteristics that are correlated with productivity also changed differen-
tially between places that heated and those that did not. Online Appendix Table A.10 
provides suggestive evidence that this is not the case. The percentage of farms own-
ing more than $20,000 equipment, which is positively correlated with productivity, 
is only weakly correlated to extreme heat exposure. While this cannot fully rule out 
selective exit from agriculture, it provides some evidence that selection is not driv-
ing our yield results.

C. Adaptation along other margins

A third explanation is that a focus on corn and soy yields, while capturing many 
of the  oft-mentioned modes of adaptation (e.g., switching seed varieties), might 
not capture all possible margins of adjustment available to farmers and thus could 
understate the extent of overall adaptation to climate change.

23 This result holds so long as the measurement error for temperature and precipitation is uncorrelated with 
the “true” temperature and precipitation values—i.e., that both exhibit classical measurement error—but does not 
require the temperature and precipitation errors to be uncorrelated. We have verified this via simulation, with results 
available upon request. 
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One way to capture broader economic adjustment to changes in climate is to 
explore climate impacts on farm revenues or profits, an approach adopted in some 
of the recent literature (e.g., Deschênes and Greenstone 2007). There are at least 
two empirical challenges with using profits in particular. The first is that mea-
sures of revenues and expenditures are only available every five years when the 
US Agricultural Census is conducted. Given that our differencing approach seeks 
to capture change in average farm outcomes over time, if both revenues and costs 
respond to annual fluctuations in climate, then differencing two “snapshots” from 
particular years might provide a very noisy measure of the longer term change in 
profitability. A second concern is that available data on expenses do not measure 
all relevant costs (e.g., the value of own or family labor on the farm), which might 
further bias profit estimates if these expenses also respond to changes in climate. 
As shown in online Appendix Section A.9, long differences regressions with such a 
measure of “profit” as the dependent variable are indeed very noisy, and we cannot 
reject that there is no effect on profits, and similarly cannot reject that the effect of 
extreme heat on profits is a factor of three larger (and more negative) than the effect 
on corn yields—i.e., that each additional day of exposure to temperatures above 
29°C reduced annual profits by 1.4 percent. This does not provide much insight on 
the relationship between extreme heat exposure and profitability.

We take two alternate approaches to exploring impacts on economic profitability. 
The first is to construct an annual measure of revenue per acre, which we do by 
combining annual  county-level yield data with annual data on  state-level  prices.24 
We then sum these revenues across the six major crops grown during the main 
 spring-summer-fall season in our sample counties: corn, soy, cotton, spring wheat, 
hay, and rice. This revenue measure will underestimate total revenue to the extent 
that not all contributing crops are included, but should capture any gain from switch-
ing among these primary crops in response to a changing climate. It will also capture 
any offsetting effect of price movements caused by yield declines, which while not 
an adaptation measure per se, might reduce the need for other adaptation. Our sec-
ond approach proceeds with the available expenses data from the census to examine 
the impact of  longer run changes in climate on different input expenditures.25

Table 3 shows results for our revenue measures. Consistent with some offsetting 
price movements, point estimates on how corn revenues per acre respond to extreme 
heat are slightly less negative than yield estimates under both panel and long differ-
ences models (columns 1 and 2), but at least for the differences model we cannot 
reject that the coefficients are the same as the yield estimates. Revenues for the six 
main crops appear roughly equally sensitive to extreme heat in a panel and long dif-
ferences setting (columns 3 and 4), again suggesting that longer run adaptation has 
been minimal.26 Furthermore, we show in online Appendix Table A.8 that trends in 

24 Prices are only available at the state level and to our knowledge do not vary much within states within a given 
year. 

25 We attempt to capture changes in average expenditures by averaging two census outcomes near each end-
point and then differencing these averaged values. For example, agriculture census data are available in 1978, 
1982, 1987, 1992, 1997, and 2002. The change in fertilizer expenditures over the period are constructed as:  
 Δ  fertilizer expenditure    1980−2000    = ( fert    1997    + fert    2002    )/2 − ( fert    1978    + fert    1982    )/2. 

26 Coefficient estimates on the  six-crop revenue measure are nevertheless about half the size of estimates for 
corn. We do not interpret this as evidence for adaptation for two reasons. First, panel and long differences estimates 
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climate have had minimal effects on expenditures on fertilizer, seed, chemical, and 
petroleum. We interpret this as further evidence that yield declines are not masking 
other adjustments that somehow reduce the economic losses associated with expo-
sure to extreme heat.

To further explore whether our yield estimates hide beneficial switching out of 
corn and to other crops, we repeat our long differences estimation with changes in 
(log) corn area and changes in the percentage of total farmland planted to corn as 
dependent variables. Results are given in Table 4, and we focus on the sample of 
counties with extreme heat outliers trimmed.27 There appears to have been minimal 
impact of increased exposure to extreme heat on total area planted to corn (col-
umn 1), but we do find some evidence that the percentage of total farm area planted 
to corn declined in areas where extreme heat exposure grew. This effect appears 

for how crop revenues respond to extreme heat are the same. Second,  adaptation-related explanations for why crop 
revenues should be less sensitive than corn revenue—e.g., farmers switch among crops to optimize revenues—
would require that farmers are able to adjust their crop mix on an annual level before any extreme heat for that 
season is realized. This seems unlikely. We believe a more likely explanation is that we are more poorly measuring 
the climate variables and thresholds that are relevant to these other crops; regressions are run under the corn tem-
perature and precipitation thresholds, and using data based on the corn growing season. If climate is measured with 
noise, then coefficient estimates will be attenuated. 

27 As shown in online Appendix Table A.5—and unlike for our yield outcomes—a few outcomes in this table 
are altered fairly substantially when these five outliers (0.3 percent of the sample) are included. Given that these 
counties are all geographically distinct (along the Mexico border in southern Texas), and experienced up to 20 times 
the average increase in exposure to extreme heat than our median county in the sample, it seems reasonable to 
exclude them from the analysis. 

Table 3—Effects of Climate Variation on Crop Revenues

Corn Main spring crops

Panel Diffs. Panel Diffs.
(1) (2) (3) (4)

GDD below threshold 0.0005 0.0003 0.0002 0.0003
(0.0001) (0.0002) (0.0001) (0.0003)

GDD above threshold −0.0046 −0.0042 −0.0024 −0.0023
(0.0005) (0.0009) (0.0003) (0.0011)

Precip. below threshold 0.0068 0.0107 0.0058 0.0116
(0.0016) (0.0048) (0.0014) (0.0058)

Precip. above threshold −0.0014 0.0035 −0.0012 0.0016
(0.0007) (0.0010) (0.0005) (0.0016)

Constant 3.9556 −0.0116 4.7926 0.0121
(0.2539) (0.0122) (0.3619) (0.0210)

Observations 48,465 1,516 48,465 1,531
Mean of dependent variable 5.55 −0.01 5.36 0.03
r2 0.568 0.579 0.490 0.454
Fixed effects Cty, Yr State Cty, Yr State

Notes: In columns 1 and 2 the dependent variable is log of agricultural revenue per acre from corn. Dependent vari-
able in columns 3 and 4 is log of agricultural revenue per acre from six main crops grown during the spring season 
(corn, soy, cotton, spring wheat, hay, and rice). Revenues are calculated as yield per acre multiplied by state-level 
annual prices. Panel regressions are weighted by average area cultivated to corn (column 1) and main crops (col-
umn 3) from 1978–2002. Long differences regressions are weighted by smoothed corn area in 1980 (column 2) and 
smoothed area cultivated to main crops (column 4). Temperature threshold is 28°C and precipitation threshold is 
50 cm in all regressions. Standard errors are clustered at the state level.
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small. In counties where increases in extreme heat were the most severe, observed 
increases in GDD above 29°C would have reduced the percentage of area planted to 
corn by roughly 3.5 percent.28

A final adaptation available to farmers would be to exit agriculture altogether, an 
option that recent literature has suggested is a possibility. For instance, Hornbeck 
(2012) shows that population decline was the main margin of adjustment across 
the Great Plains after the American Dust Bowl. Feng, Oppenheimer, and Schlenker 
(2015) use weather as an instrument for yields to show that declines in agricultural 
productivity in more recent times result in more outmigration from rural areas of the 
Corn Belt. To quantify adaptation along this margin, we repeat our long differences 
estimation with total farm area, total number of farms, and county population as 
dependent variables. If there is a net reduction in the number of people farming due 
to increased exposure to extreme heat, we should see a decline in the number of 
farms; if this additional farmland is not purchased and farmed by remaining farmers, 
we should also see a decline in total farmland.

28 We also explore whether corn planting dates, which are available at the state level for 14 states in our sample 
for the full study period, responded differentially in areas that warmed—which could be additional evidence of 
adaptation which we might miss if we’ve fixed the agricultural growing season from April 1 to September 30. Using 
National Agricultural Statistics Service data, we define the planting date as the week of the year in which 50 percent 
of that year’s crop has been planted, and find that this date moved an average of eight days earlier between  1980–2000 
in our  14-state sample, consistent with overall warming allowing earlier planting. However, we estimate a slight 
positive but insignificant relationship between change in extreme heat (GDD  >  29) and planting date in the sample, 
providing little conclusive evidence that planting dates shifted in response to changes in extreme heat exposure. 
Results available upon request. 

Table 4—Effects of Climate Variation on Alternate Adjustment Margins

Corn area Corn share Farm area Num. farms Population
(1) (2) (3) (4) (5)

GDD below threshold 0.0010 0.0003 −0.0001 −0.0002 0.0006
(0.0012) (0.0001) (0.0001) (0.0002) (0.0003)

GDD above threshold −0.0005 −0.0009 0.0000 −0.0007 −0.0008
(0.0038) (0.0004) (0.0004) (0.0010) (0.0015)

Precip. below threshold 0.0264 −0.0004 0.0037 0.0021 −0.0236
(0.0637) (0.0034) (0.0035) (0.0029) (0.0106)

Precip. above threshold −0.0051 −0.0016 0.0007 −0.0013 0.0047
(0.0063) (0.0010) (0.0007) (0.0033) (0.0024)

Constant −0.0130 −0.0174 −0.0614 −0.1836 0.0144
(0.0687) (0.0045) (0.0075) (0.0157) (0.0160)

Observations 1,511 1,516 1,523 1,526 1,526
Mean of dep. variable 0.075 0.002 −0.068 −0.202 0.045
r2 0.645 0.418 0.399 0.488 0.392
Fixed effects State State State State State
T threshold 29°C 29°C 29°C 29°C 29°C
P threshold 42 cm 42 cm 42 cm 42 cm 42 cm

Notes: Dependent variable is difference in log of corn acres (column 1), difference in share of agricultural area 
planted to corn (column 2), difference in total log farm area (column 3), difference in log number of farms (col-
umn 4), and difference in log county population (column 5). All regressions are long differences from 1980–2000, 
with the sample trimmed of extreme outliers in the temperature data. All regressions are weighted by average agri-
cultural area from 1978–2002. Standard errors are clustered at the state level.
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Results are in columns  3–5 of Table 4. Point estimates of the effect of extreme heat 
on both (log) farm area and number of farms are negative but small and  statistically 
insignificant. Nevertheless, the standard error on the number of farms measure is 
such that we cannot rule out a  5–10 percent decline in the number of farms for the 
counties experiencing the greatest increase in exposure to extreme heat over our 
main sample period.29 Point estimates on the response of population to extreme heat 
exposure are similar to estimates for number of farms, and again although estimates 
are not statistically significant we cannot rule out population declines of  5–10 per-
cent for the counties that warmed the most. Taken together, and consistent with the 
recent literature, these results suggest that simply not farming may be an immediate 
adaptation to climate change for some farmers—although we have little to say on 
the welfare effects of such migration.

D. Policy Disincentives to Adapt

A fourth explanation for limited adaptation is that certain governmental agri-
cultural support programs—subsidized crop insurance in particular—could have 
reduced farmers’ incentives to adapt. In the crop insurance program, the federal 
government insures farmers against substantial losses while also paying most or all 
of their insurance premiums, and this plausibly could have reduced farmers’ incen-
tives to undertake costly adaptations.30

As one check on whether observed lack of adaptation is being driven by the 
existence of subsidized insurance, we utilize the  large-scale expansion of the fed-
eral crop insurance program in the  mid-1990s and compare the impact of  long-run 
changes in temperature before and after the expansion. This expansion, related to 
a set of revised government policies that were instated beginning in 1994, roughly 
tripled participation in the crop insurance program relative to the late 1980s, and 
by the end of our study period over 80 percent of farmers were participating in 
the program. We find that the effects of temperature in the  post-expansion period 
were the same or even slightly smaller (in absolute value) than the effects in the 
 pre-expansion period, which is the opposite of what would be expected if subsi-
dized insurance had reduced farmers’ incentive to adapt.31 While this is not a perfect 
test—other things could have changed over time that affected farmers’ ability to 

29 As an alternate approach, and to address any concern that exiting agriculture is a particularly slow process, 
we adopt a strategy similar to Hornbeck (2012) and examine how the number of farmers in the 1980s and 1990s 
responded to variation in warming during the 1970s. Point estimates indicate small but statistically significant 
reductions in the number of farms following earlier exposure to extreme heat, again suggesting that simply not 
farming may be an immediate adaptation to climate change for some farmers. 

30 For more details on the program, see http://www.rma.usda.gov/. We note that direct income support from 
the government constitutes a rather small percentage of cash income during our main study period—an average of 
7 percent in the Corn Belt during the  1980–2000 period—suggesting that the distortionary effects of these programs 
on the adaptation decision were likely small. Additional data on farm income over time are available here: http://
www.ers.usda.gov/ data-products/ farm-income-and-wealth-statistics.aspx. 

31 Running the long differences model for  1997–2003 (thus, with  five-year average endpoints, utilizing data 
from  1995–2005) gives a   β gDD>29     = −0.00438 (SE  =  0.00179), which is almost exactly equal to our base-
line estimate for the  1980–2000 period, and less negative than the coefficient for the long differences run over 
 1980–1993 (  β gDD>29     =  −0.0056). 

http://www.rma.usda.gov
http://www.ers.usda.gov/<00AD>data-products/<00AD>farm-income-and-wealth-statistics.aspx
http://www.ers.usda.gov/<00AD>data-products/<00AD>farm-income-and-wealth-statistics.aspx
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adapt—it provides suggestive evidence that our results are not being wholly driven 
by government programs.

E. Lack of recognition of climate change

Finally, it could be the case that farmers didn’t adapt because they didn’t realize 
the climate was changing and that adaptation was needed. Although this doesn’t 
affect the internal validity of our results, it could mean that our results might pro-
vide a poor guide to impacts under future climate change if the need for adaptation 
becomes apparent. Unfortunately, we do not directly observe farmer perceptions of 
temperature increases, nor their knowledge of the relationship between temperature 
and crop yields.32 To make progress, and building directly on the model presented 
in Section I, we first explore whether farmers’ responsiveness is a function of char-
acteristics that likely shape their ability to learn about a changing climate. In par-
ticular, if adaptation is limited by a difficulty in learning about climate change, then 
we should observe more adaptation when farmers are given more time to learn about 
a given change in climate, and more adaptation if they are in an area with a lower 
temperature variance and thus a clearer “signal” of a given change in climate.

Our data are inconsistent with either of these predictions. First, as shown in 
Figure 4, point estimates for longer  long-difference periods (e.g., the 25-year and 
 30-year estimates in the bottom right panels) are almost uniformly more negative 
than estimates for the  1980–2000 period, although we cannot reject that they are the 
same in most cases. Second, we find little evidence that a lower temperature vari-
ance at baseline increased adaptation to a subsequent temperature increase. In the 
first column of Table 5, we  re-estimate our main equation, interacting the  1980–2000 
extreme temperature change in a given county with the baseline ( 1950–1980) stan-
dard deviation in extreme heat exposure in that county. The estimate on the interac-
tion term is small and statistically insignificant, providing little evidence that a lower 
underlying variance helped farmers separate signal from noise. As a third check, and 
following on recent survey evidence suggesting that past experience informs cur-
rent beliefs about climate change,33 we explore whether counties that were rapidly 
warming prior to our study period were more adaptive during our study period. In 
particular, we allow the effect of extreme heat over the  1980–2000 period in a given 
county to depend on the change in extreme heat in that county during the period 
from  1960–1980, or during  1970–1980 (if farmers weight recent evidence more 
heavily). As shown in columns 2 and 3 of Table 5, coefficients on either interaction 

32 A few existing surveys do ask farmers about their perceptions of different aspects of climate change, but the 
results are difficult to interpret. For instance, although Iowa is one of the states where temperature has changed the 
least in recent years, 68 percent of Iowa farmers in a recent survey indicated that they believe that “climate change 
is occurring” (Iowa State Extension Service 2011), but only 35 percent of them were concerned about the impacts of 
climate change on their farm operation. Similarly, only 18 percent of North Carolina farmers believed that climate 
change will decrease average yields by at least 5 percent over the next 25 years (Rejesus 2012), but slightly less than 
a 5 percent decline by 2030 could be consistent with projected impacts under more conservative warming scenarios, 
meaning these responses do not necessarily suggest a distorted perception of climate change. 

33 For instance, Myers et al. (2012) and Howe et al. (2012) show that persons residing in areas that have warmed 
in recent history are more likely to believe in future climate changes. 
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are small and insignificant, and only the coefficient on the  1960–1980 interaction 
has the expected sign.

As a fourth check on the role of beliefs in shaping adaptation, we exploit the fact 
that beliefs about climate change display well known heterogeneity by political party 
affiliation, with Republicans consistently less likely than Democrats to believe that 
climate change is occurring (e.g., Dunlap and McCright 2008). We  re-estimate our 
main equation and include an interaction between our climate variables and George 
W. Bush’s  county-level vote share in the 2000 presidential election. Because public 
debate and awareness about climate change begin in earnest in the late 1980s and 
early 1990s, this is a reasonable—if highly imperfect—proxy for beliefs about cli-
mate change. Results are given in column 5 of Table 5, and again suggest that expec-
tations about climate change, as proxied by political beliefs, had a minimal effect on 
the responsiveness of farmers to extreme heat exposure: more Republican counties 
were, if anything, less sensitive to extreme heat exposure over the study period.

A final possibility is that adaptation is limited not by farmers’ difficulty in learn-
ing about changing climate, but instead by difficulty in learning about the produc-
tion function with respect to climate—in particular, learning that extreme heat can 
be damaging to productivity. Although this is a different type of learning, it suggests 
similar empirical tests as before: farmers should have been more likely to learn 
about the production function had they been given more time to do so, or had they 
been exposed to extreme heat in a previous period. As just discussed, we find little 
evidence that either of these predictions is true. This remains the case when we 

Table 5—Heterogenous Effects of Climate Variation on Corn Yields

(1) (2) (3) (4) (5) (6)

GDD above −0.427 −0.568 −0.427 −0.424 −0.395 −0.413
(0.115) (0.099) (0.104) (0.095) (0.082) (0.085)

GDD above × SD GDD −0.002
 above, 1950–1980 (0.005)
GDD above × GDD above, 0.001
 1960–1980 (0.003)
GDD above × GDD above, −0.000
 1970–1980 (0.004)
GDD above × State GDD −0.005
 above, 1960–1980 (0.006)
GDD above × Republican 0.197
 vote share, 2000 (0.424)
GDD above × High school −0.002
 graduation rate, 1980 (0.005)

Observations 1,531 1,531 1,531 1,531 1,530 1,531
Mean of dep. variable 0.24 0.24 0.24 0.24 0.24 0.24
r2 0.610 0.615 0.610 0.610 0.623 0.614
Fixed effects State State State State State State

Notes: All coefficient estimates and standard errors are multiplied by 100. Dependent variable is the difference 
(1980–2000) in the log of smoothed corn yields. The sample of counties is limited to the 1980–2000 corn sample 
from Table 1, and regressions are weighted by 1980 corn acres. All variables in the table other than gDD above 
threshold are demeaned. Only coefficients on GDD above threshold and relevant interactions are reported, but 
all level effects, GDD below threshold, precipitation above threshold, and precipitation below threshold are also 
included in the regression. Temperature threshold is 29°C and precipitation threshold is 42 cm in all specifications. 
Standard errors are clustered at the state level.

 



VoL. 8 No. 3 135Burke and emerick: adaptation to climate change

expand the latter prediction to include the possibility that counties could learn from 
other nearby counties’ experiences, interacting  county-level changes in extreme heat 
over  1980–2000 with  state-level changes in extreme heat over the previous period 
(column 4 of Table 5). As an alternate check, and building on existing evidence that 
higher educational achievement accelerates learning about agricultural technologies 
(Feder, Just, and Zilberman 1985), we allow the effect of extreme heat to vary by 
 county-level educational attainment using data on  county-level high school gradua-
tion rates from the 1980 US census. As shown in column 6 of Table 5, we find little 
evidence that  county-level educational attainment affected subsequent adaptation.

As indirect evidence that farmers did recognize that changes in climate were shap-
ing productivity during our study period, we study whether uptake of government 
crop insurance varied as a function of changing exposure to extreme heat. Although 
premiums in the crop insurance program are very highly subsidized, meaning that 
farmers might purchase insurance regardless of the amount of risk they face, the 
average percent of corn acreage covered by these insurance programs by the end 
of our study period was “only” 80 percent (with some counties below 40 percent), 
suggesting that there remained some variation in insurance purchases.

To see whether insurance  take-up responded to our observed climate trends, 
we  re-estimate our  long-differences model using insurance adoption at the end of 
our study period (i.e., a  five-year average over  1998–2002) as the dependent vari-
able. We explore four measures of  take-up: the percent of corn acreage in a county 
enrolled in any of the multiple government crop insurance programs, the log of acres 
enrolled in a county, the number of policies sold in each county, and the total premi-
ums paid (including subsidies) in each county. Results from this exercise are shown 
in online Appendix Table A.11. While the coefficients on the temperature variables 
are only sometimes significant with  state-level clustering, results suggest that par-
ticipation in the government insurance program by 2000 was higher in counties 
who saw large increases in exposure to harmful temperatures (GDD  >  29C) over 
the previous two decades, and lower in counties that saw increase in exposure to 
generally helpful temperatures ( GDD0-29C) over the same period. Moving from the 
tenth to the ninetieth percentile of the distribution of GDD  >  29C changes implies 
roughly a 5 percentage point increase in the acreage insured, a 23 percent increase 
in the number of policies sold, and a 20 percent increase in the total premiums paid. 
Again, however, only one of these estimates is significant at conventional levels with 
 state-level clustering, so we do not wish to  oversell these results.

Combining this result on insurance  take-up with the unchanging productiv-
ity effect after the expansion of subsidized crop insurance, the data suggest that 
increased  take-up of insurance served as one response to the changing climate. 
However, there is no evidence that this response led to increased sensitivity of corn 
productivity to extreme heat (although we do not observe the counterfactual). It 
therefore appears that participation in the federal crop insurance program did not 
lead farmers to take additional risks that would have resulted in increased sensitivity 
of productivity to extreme heat.

Taken as a whole, then, we find little evidence that farmers who were more likely 
to learn about the effects of extreme heat on yields, or farmers who were more likely 
to update their expectations about future exposure to extreme heat, were more able 
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to adapt to subsequent extreme heat exposure. This implies that the lack of observed 
adaptation is not fully explained by a lack of recognition that the climate was 
 changing for the worse, and indeed we do find some evidence that changes in cli-
mate were in fact being recognized. Thus, insofar as farmers recognized the warm-
ing trend for what it was but had few adaptation options to exploit, then using these 
observed responses to warming to project future climate change impacts appears a 
reasonable “ business-as-usual” approach. Nevertheless, because we cannot defini-
tively rule out that past responses were affected by imperfect recognition of climate 
and its effects, and because farmers might more effectively learn about these things 
in the future, these caveats must be kept in mind when interpreting our projections.

IV. Projections of Impacts under Future Climate Change

Our final empirical exercise is to build projections of the impacts of future climate 
change on agricultural outcomes in the United States. To do this, we combine esti-
mates of climate sensitivities from our long differences approach with projections 
of future changes in temperature and precipitation derived from 18 global climate 
models running the A1B emissions scenario. Using data from the full ensemble of 
available climate models is important for capturing the range of uncertainty inherent 
in future climate change (Burke et al. 2015). Details of the emissions scenario, the 
climate models, and their application are provided in the online Appendix.

The overall purpose of these projections is to provide insight into potential 
impacts under a “ business-as-usual” scenario in which the future world responds to 
changes in climate similarly to how it has responded in the past. While it is unknow-
able whether future responses to climate will in fact resemble past responses—farm-
ers could adapt production practices in previously unobserved ways, or could move 
crop production to entirely new areas—our long differences approach offers two 
advantages over existing projections. First, the range of  long-run changes in climate 
projected by climate models through  mid-century is largely contained in the range 
of  long-run changes in climate in our historical sample, meaning our projections are 
not large extrapolations beyond past changes. Second, our estimates better account 
for farmers’ recent ability to adapt to  longer run changes in climate, relative to 
typical  panel-based projections that use  shorter run responses in the past to inform 
estimates of  longer run responses in the future.

In Figure 6 we present projections of average annual changes in corn yield by 
2050 across the 18 climate models. In the top panel we use long differences estimates 
to generate predictions from precipitation changes, temperature changes, and com-
bined effects of changing both temperature and precipitation. The most substantial 
negative effects of climate change are driven by increases in temperature, and while 
the magnitude of the negative effects of temperature vary across climate models, all 
predict fairly substantial negative effects of future warming on corn productivity. 
For instance, under climate change projections from the commonly used Hadley 
CM3 climate model, our long differences estimates deliver a predicted decrease 
in yields of approximately 27.3 percent relative to a world that did not experience 
climate change. The magnitude of this projection is similar to the projections from 
fixed effects estimates in Schlenker and Roberts (2009).



VoL. 8 No. 3 137Burke and emerick: adaptation to climate change

Panel B of the figure compares projections from long difference and panel mod-
els for each of the 18 different climate models. The similarity of  regression esti-
mates in the historical data results in projections that are comparable for both long 
differences and fixed effects, although the long differences estimates are somewhat 
noisier. We note that this noise is almost entirely due to the coefficient and stan-
dard error on GDD below 29°C, which is much less precisely estimated in the long 
differences than in the panel. Since a given temperature rise increases exposure to 
both harmful and beneficial GDD for almost all counties in our sample, the noise in 
the GDD below 29°C estimate greatly expands the confidence interval on the long 
differences projections.

Nevertheless, net of any adaptations that farmers have employed in the past, the 
median climate model projects average yield declines of 15 percent by  mid-century, 
with some models projecting yield losses as low as 7 percent and other losses as high 
as 64 percent. To put these projected losses in perspective, the 2012 drought and heat 

−1

−0.8

−0.6

−0.4

−0.2

0

−1

−0.8

−0.6

−0.4

−0.2

0

C
ha

ng
e 

in
 lo

g 
co

rn
 y

ie
ld

Panel A

Panel B

C
ha

ng
e 

in
 lo

g 
co

rn
 y

ie
ld

G
IS

S
E

R

C
S

IR
O

P
C

M

G
IS

S
E

H

G
IS

S
A

O
M

M
R

I

C
C

C
M

A
T

63

C
C

S
M

E
C

H
A

M

IA
P

C
N

R
M

IP
S

L

H
A

D
C

M
3

M
IR

O
C

H
IR

E
S

IN
M

C
M

3

M
IR

O
C

M
E

D
R

E
S

G
F

D
L1

G
F

D
L0

Precip.
Temperature

Combined

G
IS

S
E

R

C
S

IR
O

P
C

M

G
IS

S
E

H

G
IS

S
A

O
M

M
R

I

C
C

C
M

A
T

63

C
C

S
M

E
C

H
A

M

IA
P

C
N

R
M

IP
S

L

H
A

D
C

M
3

M
IR

O
C

H
IR

E
S

IN
M

C
M

3

M
IR

O
C

M
E

D
R

E
S

G
F

D
L1

G
F

D
L0

LD

Panel

Figure 6. Projected Impacts of Climate Change on Corn Yields by 2050

Notes: Panel A: impacts as projected by the long differences model, for each of the 18 cli-
mate models reporting the A1B (“business-as-usual”) climate scenario. Circles represent pro-
jection point estimates, whiskers the 95 percent CI, and colors represent projections using only 
precipitation changes (gray), temperature changes (black), or both combined (white circles). 
Projections are separate for each climate model, as labeled. Panel B: projected impacts of com-
bined temperature and precipitation changes across the same climate models, based on long 
differences (white) or panel estimates (black) of historical sensitivities to climate. The median 
projection is shown as a dashed line.
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wave that was considered one of the worst on record and that received extensive 
attention in the press decreased average corn yields for the year by  15–25 percent 
relative to the prior few years.34 Our median projection suggests that by 2050, every 
year will experience losses roughly this large. Valued at production quantities and 
prices averaged over  2006–2010 for our sample counties, 15 percent yield losses 
would generate annual dollar losses of $6.7 billion by 2050.

V. Conclusions

Quantitative estimates of the impacts of climate change on various economic 
outcomes are an important input to public policy, informing decisions about invest-
ments in both emissions reductions and in measures to help economies adapt to a 
changing climate. A common concern with many existing impact estimates is that 
they do not account for  longer run adjustments that economic agents might make 
in the face of a changing climate. These studies typically rely on  short-run varia-
tion in weather to estimate how outcomes respond to temperature and precipitation 
changes, an approach that helps solve identification problems but that might fail to 
capture important adjustments that agents can make in the  longer run.

We exploit large variation in  multi-decade changes in temperature and precip-
itation across US counties to estimate how farmers have responded to  longer run 
changes in climate. We argue that these changes are plausibly exogenous and show 
that their magnitude is on par with future changes in climate projected by global 
climate models, making them an ideal source of variation to identify historical 
responses to  longer run changes in climate and in turn to project future impacts.

We show that the productivity of the two main US crops, corn and soy, responded 
very negatively to  multi-decadal changes in exposure to extreme heat. These esti-
mates of  longer run responses are indistinguishable from estimates of how the same 
crops responded to  short-run (annual) variation in extreme heat over the same period, 
suggesting that farmers were no more able to mitigate the negative effects of climate 
in the long run than they were in the short run. This apparent lack of adaptation 
does not appear to be driven by any of a variety of alternative explanations: fixed 
effect estimates do not appear substantially attenuated relative to long differences 
estimates, results do not appear to be driven by  time-trending unobservables, and 
farmers do not appear to be adapting along other margins within agriculture. We also 
provide evidence that this lack of adaptation was not driven by a lack of recognition 
that climate was changing, perhaps suggesting that farmers either lacked adaptation 
options or found them too expensive to exploit.

Using climate change projections from 18 global climate models, we project 
potential impacts on corn productivity by  mid-century. If future adaptations are 
as effective as past adaptations in mitigating the effects of exposure to extreme 
heat, our median estimate is that future climate change will reduce annual corn 
productivity in 2050 by roughly 15 percent, which is on par with the effect of the 

34 For instance, see http://www.ers.usda.gov/topics/ in-the-news/ us-drought-2012-farm-and-food-impacts.aspx. 
The range in estimated losses depend on whether the comparison is against previous season’s yield or the yield 
projected at planting in 2012. 

http://www.ers.usda.gov/topics/<00AD>in-the-news/<00AD>us-drought-2012-farm-and-food-impacts.aspx
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 highly-publicized “extreme” drought and heat wave experienced across the US 
Corn Belt in the summer of 2012. Given that these projections account for farmers’ 
present adaptive  abilities, our results imply substantial losses under future climate 
change in the absence of unprecedented adaptation.
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